

 [image: _images/4ab289956997d2cfb749027c89603549f396a0d3.svg]
Introduction

Summary

These scripts facilitate collections management workflows within the IFI Irish Film Archive.
These scripts have been tested in OSX & Mac OS, Windows 7 & 10 & 11, Ubuntu 14.04 & 16.04 & 18.04.
They are mostly Python 3.7 compatible but some are still Python 2.7 only.

They are located here on github: https://github.com/Irish-Film-Institute/IFIscripts

An installation package version is available on PyPI: https://pypi.org/project/ifiscripts/.
The scripts included can be found in setup.py or pyproject.toml.
To install: run pip(3) install ifiscripts in the terminal.

Most scripts have ArgumentParser so you can run $ifiscript.py -h to check the usage.
Some scripts without ArgumentParser take either a file or a directory as their input, for
example makeffv1.py filename.mov or
premis.py path/to/folder_of_stuff.
For all the arguments requiring a path, it’s best to just drag and drop
the folder or filename into the terminal as this provides the absolute path.

We want the project to be as reuseable as possible in different institutions and contexts. Some scripts, particularly anything to do with Object Entry or Accessioning will be quite IFI specific, but other scripts such as makeffv1.py, dcpaccess.py and many others have been used in a variety of contexts in several different countries.

The project uses the MIT license, and we encourage the reuse, modification and study of the scripts. It’s always nice to hear when the scripts have been reused in some way, but it’s not necessary to let us know.

Purpose

These python scripts facilitate much of our collections management procedures for digitised and born digital objects in the Irish Film Institute. We utilise a lot of open source tools, so we wanted to make these scripts as open as possible. This is why this project has the MIT License.

The Irish Film Institute has followed the SPECTRUM museum collections management standard for several years. These scripts attempt to follow SPECTRUM procedures while also utilising some of the concepts of the Open Archival Information System (OAIS). Initially the scripts only handled single video files, but they are now capable of handling:

	Digital Cinema Packages

	XDCAM cards

	DPX/TIFF image sequences

	Documents (.doc, .pdf etc)

	Images (.jpg, .TIFF etc)

An example workflow might be:

	A digital object is created or acquired by the IFI, and ingest begins.

	
	sipcreator.py is run on the object. This script:
	
	generates an Object Entry identifier (eg OE-1234)

	creates a folder structure for logs, metadata, objects

	generates a UUID, extracts technical metadata

	generates a md5 checksum manifest

	and see the usage section for more.

	All of these preservation events are logged in a log file located in the logs directory. This log file tries to use PREMIS (PREservation Metadata Implementation Strategies) terminology as much as possible.

	Even though the package has yet to be accessioned, temporary backups are required. copyit.py will generate backups, and it will use the checksum manifest generated by sipcreator.py to verify the integrity of the file transfer.

	If the package contains FFV1 or Matroska files, perhaps ffv1mkvvalidate.py could run, which uses mediaconch to verify the compliance of the files, and stores the information in the logfile.

	If the package passes our Quality Control Procedures, then it will be accessioned. aipcreator.py will generate an accession number, rename the OE number with the accession number, generate a SHA-512 manifest and update the log file to document these new preservation events.

	A large batch of items can be AIPed using batchaipcreator.py. If the -pbcore command line argument is used with the aipcreator scripts, technical metadata based on the PBCore standard will be generated in CSV format. This process can be run seperately by using makepbcore.py. CSV was chosen instead of XML as this allows us to immediately import the CSV into our database system so that we have item level records.

	Access copies may be needed, so low-res watermarked proxies can be generated with bitc.py, or high res mezzanines with prores.py.

	The AIP can then be written to preservation storage, again using the copyit.py command.

So this is just one way of using the scripts from acquisition to preservation storage, but there are many other scripts for specific workflows, which you can investigate further down in the documentation.

Table of Contents

Contents:

	Installation
	General

	External Dependencies

	Specific Instructions - Windows

	Specific Instructions - Ubuntu

	Contributing
	Issues

	Pull Requests

	Contributions Needed

	Usage
	Arrangement
	sipcreator.py

	batchsipcreator.py

	aipcreator.py

	batchaipcreator.py

	order.py

	makepbcore.py

	mergepbcore.py

	merge_csv.py

	deletefiles.py

	package_update.py

	subfolders.py

	accession_register.py

	Transcodes
	normalise.py

	makeffv1.py

	bitc.py

	prores.py

	makedip.py

	concat.py

	dcpaccess.py

	dcpfixity.py

	dcpsubs2srt.py

	Fixity Scripts
	copyit.py

	manifest.py

	makedfxml.py

	shadfxml.py

	validate.py

	as11fixity.py

	batchdiff_framemd5.py

	Image Sequences
	seq2ffv1.py

	seq2prores.py

	seq.py

	oeremove.py

	seq2dv.py

	batchmetadata.py

	batchrename.py

	Quality Control
	massqc.py

	videoerror.py

	framemd5.py

	ffv1mkvvalidate.py

	lossy_check.py

	structure_check.py

	Specific Workflows
	masscopy.py

	makefolders.py

	loopline_repackage.py

	batchmakeshell.py

	getdip.py

	Special Collections
	batchsc_checkdir.py

	batchsc_validate.py

	batchsc_organise.py

	batchsc_aip_update.py

	Misc
	update.py

	makeuuid.py

	durationcheck.py

	fakexdcam.py

	get_ps_list.py

	check_register.py

	Experimental-Premis
	premis.py

	viruscheck.py

	Credits

Installation

General

This is a python 3.8 project.

In general, you can install the scripts from Pypi (installed along with Python) by running python -m pip install ifiscripts on Windows or python3 -m pip install ifiscripts on Mac OS.

You can also clone or download the whole repository (https://github.com/Irish-Film-Institute/IFIscripts) and run the scripts from your cloned path.

For our developer, on Mac OS and Windows, we create a folder in the home directory called ifigit, then we run git clone https://github.com/Irish-Film-Institute/IFIscripts.git. Then we add the ifiscripts folder to $PATH which allows us to access the scripts from any directory, not just from ifigit/ifiscripts.

Alternatively, some folks prefer to locate (cd) into the cloned repository and run the scripts from there, for example to run makeffv1.py
python makeffv1.py path/to.filename.mov.

External Dependencies

External dependencies are listed below.

Some vital dependencies are for the library or the common tools used for the materials.
They can be found in the pyproject.toml dependencies list and will be installed when installing ifiscripts using pip.
If you are cloning the repository, you can manually install the dependencies, such as pip install lxml.

	bagit

	clairmeta

	dicttoxml

	future

	lxml

	psutil

Some essential subprocess dependencies not in Pypi for most of the scripts will have to be installed manually.

	ffmpeg

	ffprobe

	mediainfo

The following dependencies are also needed for many scripts:

	7zip aka 7za aka p7zip-full

	asdcplib (https://github.com/cinecert/asdcplib, required by clairmeta for checking DCP)

	exiftool (https://exiftool.org/install.html)

	md5deep

	mediaconch

	qcli

	rawcooked

	rsync

	siegfried aka sf (https://www.itforarchivists.com/siegfried)

	sox (SoundeXchange, https://sourceforge.net/projects/sox/, required by clairmeta)

Some dependencies below are not our common dependencies but could be needed for specific purpose:

	gcp (copy from/to LTO, installed via gnu-coreutils on OSX)

	git (for update.py, no longer in use for updating scripts)

	mkvpropedit (for concat.py, installed via mkvtoolnix)

	openssl

Specific Instructions - Windows

	install 64-bit git-bash using all the default settings https://git-scm.com/downloads - make sure it’s the 64-bit version!

	install 64-bit python3, making sure to tick the option to ADD TO PATH https://www.python.org/downloads/

	open cmd and mkdir ifiscripts and git clone https://github.com/Irish-Film-Institute/IFIscripts.git

	add this ifiscripts path (eg C:\Users\$USER\ifigit\ifiscripts)to the environmental path, following these steps: https://www.computerhope.com/issues/ch000549.htm

	ffmpeg the default option works well - 64-bit static https://ffmpeg.zeranoe.com/builds/ and place in scripts folder
* OR install media-autobuild-suite but extract to the C:mas folder due to long path issues

	mediainfo - get the 64-bit CLI version https://mediaarea.net/en/MediaInfo/Download/Windows

	install lxml with pip install lxml if not installing ifiscripts by pip

	install siegfried exe (https://www.itforarchivists.com/siegfried/)file to the ifiscripts folder and run sf -update in cmd

	download exiftool installer and select the ‘latest build’ option - make sure that the option to add to path is ticked - https://oliverbetz.de/pages/Artikel/ExifTool-for-Windows

	install notepad++ - https://notepad-plus-plus.org/downloads/

	install libreoffice for accessing and editing csv files - https://www.libreoffice.org/download/download/

Specific Instructions - Ubuntu

(We no longer support Ubuntu but the scripts are still working)

A lot of these can be installed on Ubuntu with a single line:
sudo apt update && sudo apt install python3-pip ffmpeg mkvtoolnix exiftool git md5deep p7zip-full

In order to add the rest, refer to the installation instructions of the relevant tools.
For mediaarea tools, it can be easiest to use their own snapshot repository:

wget https://mediaarea.net/repo/deb/repo-mediaarea-snapshots_1.0-13_all.deb && sudo dpkg -i repo-mediaarea-snapshots_1.0-13_all.deb && sudo apt update && sudo apt install mediainfo dvrescue qcli rawcooked mediaconch

Please find an extra installation and update guideline [https://ifi1-my.sharepoint.com/:b:/g/personal/yhe_irishfilm_ie/ES5_i9-khIpBlH8GDVhy5eMB846bDQrHpJajFjJeKuJyhQ?e=bNIm8H]
for installing ifiscripts using pip on Windows or Mac.

Contributing

Issues

Contributions are very much welcome in any form. Feel free to raise an issue requesting a new feature, or to report a bug. If requesting a new feature, please describe the workflow which the feature will be used, the required input & output data, and the output form of that. If reporting a bug, please copy/paste the full, complete, uncut terminal output.

For the issues requested by IFI Irish Film Archive staff, please raise tickets in the Teams/Script work group/Script_maintenance_log.xlsx. All tickets will be assessed with workflow first and then uploaded on GitHub in new branches or issues if needed.

For issues we are going to solve, we will create a relative pull request and quote each other.

Pull Requests

Pull requests are welcome. If contribution is on existing scripts, please follow the coding style and leave comments for short descriptions. If contributing new script, it can be nice to run it through pylint first, as this will check for PEP-08 compliance.

We are trying to limit the use of external dependencies unless it is necessary for the workflows and materials. While if you add any external dependencies, please specify in the pull request and add them in setup.py.

Please commit as ‘$script.py - $description’ for a clear review.
Please also leave the test instances and results with the full, complete, uncut terminal output. If it generates any files, please specify the filename and format, and content if applicable.

For pull requests by IFI Irish Film Archive staff, please follow the script work group policy and contributing after testing in the local workspace. For any edits of re-phrasing or typo, force-push would be better in case of unnecessary commits.

Contributions Needed

Some good first contributions could be adding explanatory docstrings to libraries like ififuncs.py, or revising older scripts, such as validate.py so that they are more in line with the coding style of recent scripts. Some of our main() functions are far too long and are doing too much, so they are in need of being split up into smaller functions.

Overall, the project needs to grow in the following ways:

	Reduce code duplication across scripts. These duplications continue to be difficult to maintain. Moving regularly used functions to ififuncs definitely helps.

	unittests are desperately needed! Scripts are becoming more and more linked, so automated testing is needed in order to find errors in areas that we might not expect. This should also allow integration with something like Travis.

	A config file is needed in some way shape or form. For example, logs and old manifests are stored on the desktop. It isn’t really cool that these folders just appear without the user even knowing. This could also allow the scripts to be more generic, as IFI specific options could be enabled here.

	It would probably be a good idea to introduce classes into IFIscripts. Some functions return and call an embarrasing number of values.

	Have some sort of integration with a mysql database for tracking objects and logging events.

Usage

Arrangement

sipcreator.py

	Accepts one or more files or directories as input and wraps them up
in a directory structure in line with IFI procedures using
copyit.py.

	Source objects will be stored in an /objects directory. Directory
structure is: parent directory named with a UUID, with three child
directories (objects, logs metadata):

	Metadata is extracted for the AV material and MD5 checksums are
stored for the entire package. A log records the major events in the
process.

	Usage for one directory -
sipcreator.py -i /path/to/directory_name -o /path/to/output_folder

	Usage for more than one directory -
sipcreator.py -i /path/to/directory_name1 /path/to/directory_name2 -o /path/to/output_folder

	Run sipcreator.py -h for all options.

batchsipcreator.py

	Batch process packages by running sipcreator.py

	The script will only process files within subfolders.

	The script will ask for the starting OE number, and each further package
will auto-increment by one.

	Usage for processing all subdirectories that (for example) places all XML/PDF/TXT
files in the supplemental metadata subdirectory, and place all MF and STL files within objects-
batchsipcreator.py -i /path/to/directory_name -o /path/to/output_folder -supplement_extension_pattern xml pdf txt -object_extension_pattern mxf stl

	Run batchsipcreator.py -h for all options.

aipcreator.py

	Turns a SIP that has passed QC procedures into an AIP.

	Currently this just works with packages that have been generated
using sipcreator.py and seq2ffv1.py. SHA512 manifests are
created,the OE number is replaced by an accession number, and the sipcreator
logfile is updated with the various events that have taken place.

	Usage for one directory - aipcreator.py /path/to/directory_name

	Run aipcreator.py -h for all options.

batchaipcreator.py

	Batch process packages by running aipcreator.py and
makepbcore.py

	The script will only process files with sipcreator.py style
packages. makeffv1.py and dvsip.py packages will be ignored.

	Usage for processing all subdirectories -
batchaipcreator.py /path/to/directory_name

	Run batchaipcreator.py -h for all options.

order.py

	Audits logfiles to determine the parent of a derivative package.

	This script can aid in automating large accessioning procedures that
involve the accessioning of derivatives along with masters, eg a
Camera Card and a concatenated derivative, or a master file and a
mezzanine.

	Currently, this script will return a value :None, or the parent
OE number. It also prints the OE number in its OE-XXXX just
for fun.

	Usage for one directory - order.py /path/to/directory_name

makepbcore.py

	Describes AV objects using a combination of the PBCore 2 metadata
standard and the IFI technical database.

	This script takes a folder as input. Either a single file or multiple
objects will be described.

	This will produce a single PBCore CSV record per package, even if
multiple objects are within a package. The use case here is complex
packages such as XDCAM/DCP, where we want a single metadata record
for a multi-file object.

	The CSV headings are written in such a way to allow for direct import
into our SQL database.

	Usage for one directory - makepbcore.py /path/to/directory_name

	Run makepbcore.py -h for all options.

mergepbcore.py

	Collates PBCore CSV records into a single merged CSV.

	The merged csv will be stored in the Desktop ifiscripts_logs folder.

	This script takes a parent folder containing AIPs as input.

	Usage mergepbcore.py /path/to/folder_that_contains_AIPs_as_input

	Run mergepbcore.py -h for all options.

merge_csv.py

	Collates CSV records into a single merged CSV.

	The merged csv will be stored in the Desktop ifiscripts_logs folder. There is no error checking.

	This script takes as many as CSV files with the same titles as needed as input.

	Usage merge_csv.py /path/to/csv_1 /path/to/csv_2 /path/to/csv_x

	Run merge_csv.py -h for all options.

deletefiles.py

	Deletes files after sipcreator.py has been run, but before
aipcreator.py has been run.

	Manifests are updated, metadata is deleted and the events are all
logged in the logfile.

	This script takes the parent OE folder as input. Use the -i
argument to supply the various files that should be deleted from the
package.

	Usage for deleting two example files -
deletefiles.py /path/to/oe_folder -i path/to/file1.mov path/to/file2.mov

	Run deletefiles.py -h for all options.

package_update.py

	Rearranges files into a subfolder files after sipcreator.py has
been run, but before aipcreator.py has been run.

	Manifests are updated, files are moved, and the events are all logged
in the logfile.

	This is useful in conjunction with sipcreator.py and
deletefiles.py, in case a user wishes to impose a different
ordering of the files within a large package. For example, from a
folder with 1000 photographs, you may wish to create some sufolders
to reflect different series/subseries within this collection. This
script will track all these arrangement decisions.

	This script takes the parent OE folder as input. Use the -i
argument to supply the various files that should be moved. The
new_folder argument declares which folder the files should be
moved into. Run validate.py to verify that all went well.

	Usage for moving a single file into a subfolder -
package_update.py /path/to/oe_folder -i path/to/uuid/objects/file1.mov -new_folder path/to/uuid/objects/new_foldername

	Run package_update.py -h for all options.

subfolders.py

	Generates subfolders based on filenames within the input directory
and if -move is used, moves the relevant files into these new directories.

	Eg. An input directory contains file1.mkv, file1.xml file2.mkv, file2.xml
This will result in directories called file1 and file2 being created, and
file1.mkv and file1.xml will be moved into the file1 directory, with a similar action
for file2

	Usage to just make subfolders: subfolders.py -i path/to/input

	Usage to make subfolders and move files: subfolders.py -move -i path/to/input

accession_register.py

	Generates a helper accession register based on the metadata in other spreadsheets.

	Usage: accession_register.py -pbcore_csv /path/to/pbcore_csv -sorted_csv /path/to/sorted_csv -filmo_csv /path/to/filmo_csv

Transcodes

normalise.py

	Transcodes to FFV1/Matroska and performs framemd5 validation. Accepts
single files only. Batch functionality may be added at a later date.
For IFI purposes, the -sip option is needed as this will also launch
sipcreator.py and generate the IFI package structure. If this -sip flag is not
used, then the script will not impose a folder structure.
You may wish to add some supplemtal metadata to the package, such as an EDL or
some capture notes, so these can be added with the -supplement option.

	Currently, the lossless report is displayed in the middle of the process, so care is needed
to ensure that the losslessness is verified before moving on to accessioning.

	Usage within IFI - normalise.py -i filename.mov -o /path/to/output_directory -sip

	Usage within IFI with supplement option - normalise.py -i filename.mov -o /path/to/output_directory -sip -supplement path/to/supplemental_1.txt path/to/supplemental2.edl

	Usage for single file in a general usage - normalise.py -i filename.mov -o /path/to/output_directory

makeffv1.py

	Transcodes to FFV1.mkv and performs framemd5 validation. Accepts
single files or directories (all video files in a directory will be
processed). CSV report is generated which gives details on
losslessness and compression ratio.

	Usage for single file - makeffv1.py filename.mov

	Usage for batch processing all videos in a directory -
makeffv1.py directory_name

bitc.py

	Create timecoded/watermarked h264s for single files or a batch
process.

	Usage for single file - bitc.py filename.mov

	Usage for batch processing all videos in a directory -
bitc.py directory_name

	This script has many extra options, such as deinterlacing, quality
settings, rescaling. Use bitc.py -h to see all options

prores.py

	Transcode to prores.mov for single/multiple files.

	Usage for single file - prores.py filename.mov

	Usage for batch processing all videos in a directory -
prores.py directory_name

	This script has many extra options, such as deinterlacing, quality
settings, rescaling. Use prores.py -h to see all options

makedip.py

	Runs bitc.py or prores.py.

	Usage for running bitc.py on all objects in a batch of information packages -
makedip.py path/to/batch_directories -o path/to/output

	The -prores option will use run prores.py instead of bitc.py

	The script will rename the output file so that it contains either the OE number or the accession number.

	If it sees that a proxy already exists, then it will skip the video.

	Use makedip.py -h to see all options

concat.py

	Concatenate/join video files together using ffmpeg stream copy into a
single Matroska container. Each source clip will have its own chapter
marker. As the streams are copied, the speed is quite fast.

	Usage:
concat.py -i /path/to/filename1.mov /path/to/filename2.mov -o /path/to/destination_folder

	A lossless verification process will also run, which takes stream
level checksums of all streams and compares the values. This is not
very reliable at the moment.

	Warning - video files must have the same technical attributes such as
codec, width, height, fps. Some characters in filenames will cause
the script to fail. Some of these include quotes. The script will ask
the user if quotes should be renamed with underscores. Also, a
temporary concatenation textfile will be stored in your temp folder.
Currently only tested on Ubuntu.

	Dependencies: mkvpropedit, ffmpeg. ## Digital Cinema Package Scripts
##

dcpaccess.py

	Create h264 (default) or prores transcodes (with optional subtitles)
for unencrypted, single/multi reel Interop/SMPTE DCPs. The script
will search for all DCPs in subdirectories, process them one at a
time and export files to your Desktop.

	Usage: dcpaccess.py dcp_directory

	Use -p for prores output, and use -hd to rescale to 1920:1080
while maintaining the aspect ratio.

	Dependencies: ffmpeg must be compiled with libopenjpeg -
brew install ffmpeg --with-openjpeg.

	Python dependencies: lxml required.

	Further options can be viewed with dcpaccess.py -h

dcpfixity.py

	Verify internal hashes in a DCP and write report to CSV. Optional
(experimental) bagging if hashes validate. The script will search for
all DCPs in subdirectories, process them one at a time and generate a
CSV report.

	Usage: dcpfixity.py dcp_directory

	Further options can be viewed with dcpfixity.py -h

dcpsubs2srt.py

	Super basic but functional DCP XML subtitle to SRT conversion. This
code is also contained in dcpaccess.py

	Usage: dcpsubs2srt.py subs.xml

Fixity Scripts

copyit.py

	Copies a file or directory, creating a md5 manifest at source and
destination and comparing the two. Skips hidden files and
directories.

	Usage: copyit.py source_dir destination_dir

	Dependencies: OSX requires gcp - brew install coreutils

manifest.py

	Creates relative md5 or sha512 checksum manifest of a directory.

	Usage: manifest.py directory or for sha512 hashes:
manifest.py -sha512 directory

	By default, these hashes are stored in a desktop directory, but use
the -s option in order to generate a sidcecar in the same
directory as your source.

	Run manifest.py -h to see all options.

makedfxml.py

	WARNING - until this issue is resolved, this script can not work with
Windows: https://github.com/simsong/dfxml/issues/29

	Prints Digital Forensics XML to your terminal. Hashes are turned off
for now as these will usually already exist in a manifest. The main
purpose of this script is to preserve file system metadata such as
date created/date modified/date accessed.

	This is a launcher script for an edited version of
‘https://github.com/simsong/dfxml/blob/master/python/walk_to_dfxml.py’.
The edited version of walk_to_dfxml.py and the Objects.py
library have been copied into this repository for the sake of
convenience.

	Usage: makedfxml.py directory.

	NOTE: This is currently a proof of concept. Further options, logging
and integration into other scripts will be needed.

	There may be a python3 related error on OSX if python is installed
via homebrew. This can be fixed by typing unset PYTHONPATH in the
terminal.

shadfxml.py

	Creates DFXML and sha512 manifests but only in sipcreator/uuid packages.

	This will work recursively so all packages within a directory will be processed.

	Usage: shadfxml.py directory

validate.py

	Validate md5 or SHA512 sidecar manifests. Currently the script
expects two spaces between the checksum and the filename.

	In packages that have been generated with sipcreator.py, the results
of the process will be added to the logfile and the checksum for the
logfile will update within the md5 and sha512 manifests

	Usage: validate.py /path/to/manifest.md5 or
validate.py /path/to/_manifest-sha512.txt

as11fixity.py

	Validates AS-11 UK DPP mxf file(s) by comparing file checksum
from both information package manifest and DPP xml <MediaChecksumValue>.

	Prints file & folder count and fixity details for each package.

	Generates a csv report on the desktop for checking details.

	Usage: as11fixity.py /path/to/as_11 or as11fixity.py /path/to/parent_folder

	as11fixity.py -h is also available

batchdiff_framemd5.py

	Creates framemd5 sidecars on a batch of SIPs powered by framemd5.py;
Compares the hashes in framesmd5 and those in md5 files in PSM directory;
Once mismatch was found, it will skip the rest of the hashes and
skip to the next object; It will delete all framemd5 files after
the batch of the comparsions have finished.

	Usage: batchdiff_framemd5.py -sip /path/to/parent_folder/of/SIPs
-psm /path/to/parent_folder/of/PSMs

	NB: The script will default to only one md5 manifest file per PSM. If
there are repeated manifest in the directory, users may need to add bloack
in the script manually.

Image Sequences

seq2ffv1.py

	Work in progress -more testing to be done.

	Recursively batch process image sequence folders and transcode to a
single ffv1.mkv.

	Framemd5 files are generated and validated for losslessness.

	Whole file manifests are also created.

	Usage - seq2ffv1.py parent_folder

seq2prores.py

	Specific IFI workflow that expects a particular folder path:

	Recursively batch process image sequence folders with seperate WAV
files and transcode to a single Apple Pro Res HQ file in a MOV
container. PREMIS XML log files are generated with hardcoded IFI
values for the source DPX sequence and the transcoded mezzanine file
in the respective /metadata directory

	A whole file MD5 manifest of everything in the SIP are also created.
Work in progress - more testing to be done.

	Usage - seq2prores.py directory

	seq2prores accepts multiple parent folders, so one can run
seq2prores.py directory1 directory2 directory3 etc

seq.py

	Transcodes a TIFF sequence to 24fps v210 in a MOV container.

	Usage: seq.py path/to/tiff_folder and output will be stored in
the parent directory.

	Further options can be viewed using seq.py -h

oeremove.py

	IFI specific script that removes OE### numbers from the head of an
image sequence filename.

	Usage - oeremove.py directory.

seq2dv.py

	Transcodes a TIFF sequence to 24fps 720x576 DV in a MOV container.

	Usage: seq.py path/to/tiff_folder and output will be stored in
the parent directory.

batchmetadata.py

	Traverses through subdirectories trying to find DPX and TIFF files
and creates mediainfo and mediatrace XML files.

	Usage: batchmetadata.py path/to/parent_directory and output will
be stored in the parent directory.

batchrename.py

	Renames TIFF files in an image sequence except for numberic sequence
and file extension.

	Usage - batchrename.py directory - enter new filename when
prompted

Quality Control

massqc.py

	Generate QCTools xml.gz sidecar files via qcli which will load immediately in
QCTools.

	Usage for single file - massqc.py filename.mov

	Usage for batch processing all videos in a directory -
massqc.py directory_name

videoerror.py

	Detect corrupted frames in m2t/HDV captures.

	Generates a CSV report in ~/Desktop/ifiscripts_logs

	Usage for batch processing all m2t videos recursively in a directory -
`` videoerror.py directory_name``

framemd5.py

	Creates framemd5 sidecars on all mov/mkv files in all subfolders beneath your input.

	If the input is a file, then framemd5.py will just generate a sidecar for this one file.

	Usage for single file - framemd5.py -i filename.mov

	Usage for batch processing all videos in a directory -
framemd5.py -i directory_name

ffv1mkvvalidate.py

	Validates Matroska files using mediaconch.

	An XML report will be written to the metadata directory.

	A log will appear on the desktop, which will be merged into the SIP
log in /logs.

	Usage for batch processing all videos in a directory -
ffv1mkvvalidate.py directory_name

lossy_check.py

	This script is to check losslessness for a batch of sipped image sequence objects

	It will check the losslessness from package/$uuid/logs/$uuid_seq2ffv1_log.log

	It will return the result of ‘lossless’ or ‘lossy’ for each information package

	Usage for batch processing all videos in a directory -
lossy_check.py -i directory_name

structure_check.py

	This script is to check the structure of a batch of SIPs/AIPs(and AIP shells)

	It will show the directory tree of each information package

	Users are able to manually record if the structure is right or not

	The script will list a summary at the end

	Usage: structure_check.py -i directory_name

Specific Workflows

masscopy.py

	Copies all directories in your input location using copyit.py ONLY if
a manifest sidecar already exists.

	This is useful if a lot of SIPs produced by makeffv1 are created and
you want to move them all to another location while harnessing the
pre-existing checksum manifest.

	WARNING - It is essential to check the log file on the
desktop/ifiscripts_logs for each folder that transferred!!

	Usage:
masscopy.py /path/to/parent_folder -o /path/to/destination_folder

makefolders.py

	Creates a logs/objects/metadata folder structure with a UUID parent
folder. This is specific to a film scanning workflow as there are
seperate audio and image subfolders. You can specifiy the values on
the command line or a terminal interview will appear which will
prompt you for filmographic URN, source accession number
and title. Use makefolders.py -h for the full list of options.

	Usage: makefolders.py -o /path/to/destination

loopline_repackage.py

	Retrospectively updates older FFV1/DV packages in order to meet our
current packaging requirements. This should allow aipcreator.py and
makepbcore.py to run as expected. This will process a group of
packages and each loop will result in the increment by one of the
starting OE number. Use with caution.

	This script should work on files created by
makeffv1.py dvsip.py loopline.py

	Usage: loopline_repackage

batchmakeshell.py

	Creates shells for the AIPs under a batch (or SIP shells of large-size
materials for backup use). This is used for the accessioning closing steps.
The script will recognise all the folders named with “aaa[0-9]{4}” digital
accession number format. Then created their shell folders named
“aaa[0-9]{4}_shell” and clone all the subcontent except the content inside the
‘objects’ folder into them. The shells will be created into the targeted output path.

	Usage: batchmakeshell.py path/to/batch_directories -o /path/to/destination

	This script has extra options, including making shells for AS-11 UK DPP and
DCP, and making SIP shells for DCDM and other large-size materials.
Use batchmakeshell.py -h to see all options.

getdip.py

	Retrieves DIPs (shells, proxies or mezzanines) from storage by accession numbers.
The script checks if the required AIPs are in the storage for a form of DIPs and
copied to destination if needed. The accession numbers can be either input manually
or imported by a formatted csv including the required accession numbers.

	Usage: getdip.py -t DIP_type -n accession_numbers -i /root/of/DIP/dir -o
path/to/destination for manually typing the accession numbers in and copy the DIPs.
getdip.py -t DIP_type -csv path/to/accession_numbers/csv -i /root/of/DIP/dir
-justcheck for importing access numbers from csv and just checking if the required
accession numbers have related DIP in the storage.

	Use getdip.py -h to see all options.

Special Collections

batchsc_checkdir.py

	Checks if each special collections package in the storage is an AIP (processed package) or
a RAW (unprocessed package) has been processed, and then move either
to a separate folder.’

	This script doesn’t have any arguments. It prints 2 functions for selection.

	Usage: batchsc_checkdir.py

batchsc_validate.py

	Runs validate.py for a batch of special collections unprocessed packages under the same
directory. All validated packages will be moved to required destination.

	All packages failed validation remain in the source location. The script will return the
directory for the running data for all failed validations after it finishes.

	For all the backlogs having logs and md5 manifests, the script will remove the logs and
manifests after they passed validation and moved to the destination.

	This script doesn’t have any arguments. It prints the steps the script will do and ask for
the source and the destination at the beginning.

	Usage: batchsc_validate.py

batchsc_organise.py

	Use with caution! It will change the files matadata and package structure and there is
no log for this.

	Function 1 - (Use with caution) Rename folders/files - replace all spaces and special
characters to ‘_’

	Function 2 - Rename packages - replace spaces to ‘_’ and remove all special characters

	Function 3 - Move subfiles - move all files to the root of the packages

	Function 4 - (Use only after 3.) Delete subfolders - Delete all subfolders in each packages

	This scripts doesn’t have any arguments. It asks for the source and lists all the packages.
Then it prints above 4 functions for selection.

batchsc_aip_update.py

	Moves all subfiles in the objects folder in the AIPs (processed packages) to the root,
or renames (removes special characters) all the subfiles. It does update the log for AIPs
when each AIP completes processing. It will returns AIPs cannot update the log at the end.

	Usage: batchsc_aip_update.py -movetoobjects /path/to/parent/folder
or batchsc_aip_update.py -rename /path/to/parent/folder

Misc

update.py

	Updates IFIscripts to the latest git head if the following directory
structure exists in the home directory: ifigit/ifiscripts

	Usage: update.py

makeuuid.py

	Prints a new UUID to the terminal via the UUID python module and the
create_uuid() helper function within ififuncs.

	Usage: makeuuid.py

durationcheck.py

	Recursive search through subdirectories and provides total duration
in minutes. Accepts multiple inputs but provides the total duration
of all inputs.

	Usage: durationcheck.py /path/to/parent_folder or
durationcheck.py /path/to/parent_folder1 /path/to/parent_folder2 /path/to/parent_folder3

fakexdcam.py

	Creates a fake XDCAM EX structure for testing purposes

	Usage: fakexdcam.py /path/to/output_folder

get_ps_list.py

	Create a csv file from mounted ‘preservation storage’ directory,
including accession numbers from package title, object entry number
from log file, and accession numbers from log file for all preserved AIPs.

	Usage: get_ps_list.py -i /path/to/preservation_storage

check_register.py

	Print mismatch accession numbers and object entry numbers.

	Compare between csv files from preservation list by get_ps_list.py
and from (partly) digital accession register or help register, etc.

	Usage: check_register.py -preservation_storage_csv /path/to/csv_made_by_get_ps_list_py
-register_csv /path/to/accession_register

Experimental-Premis

premis.py

	Work in progress PREMIS implementation. This PREMIS document will
hopefully function as a growing log file as an asset makes its way
through a workflow.

	Requries pyqt4 (GUI) and lxml (xml parsing)

	Usage - premis.py filename.

viruscheck.py

	Work in progress script by @ecodonohoe

	Scans directories recursively using ClamAV

Credits

The majority of the code in this repository is written by Kieran O’Leary, but it is the product of many years of research by the staff within the Irish Film Institute. The actual code contributors can be seen here [https://github.com/kieranjol/IFIscripts/graphs/contributors].

Past and present staff members who have contributed in one way shape or form to this project are [in NO order]:

Anja Mahler, Raelene Casey, Kasandra O’Connell, Kieran O’Leary, Eoin O’Donohoe, Aoife Fitzmaurice, Brian Cash, Columb Gilna, Manus McManus, Gavin Martin, Felix Meehan, Fiona Rigney, Michael Ryan, Dean Kavanagh, Sunniva O’Flynn, Eilís Ní Raghallaigh, Joanne Carroll, Karen Wall, Rebecca Grant, Simon Factor, Aaron Healy.

The project is very much inspired by the work of Dave Rice, particularly the makelossless script within mediamicroservices [https://github.com/mediamicroservices/mm].

Other key external people who have contributed (the scripts would not be as they are without these people) in one way shape or form, whether they realise it or not are in NO order :

Ashley Blewer, Piaras Hoban, Reto Kromer, Dave Rice, Jerome Martinez, Peter Bubestinger, Maureen Callaghan, Peggy Griesinger, Kara Van Malssen, Lauren Sorenson, Kate Murray, Misty de Meo, Carl Eugen Hoyos, Michael Niedermayer, Vittorio Giovara, Kieran Kunhya, Stephen McConnachie, Edward Anderson, Peter Ross, Nick Krabbenhoeft, Andy Jackson, David Underdown, Rebecca Grant, Sandra Collins, Ana Ribieiro, Patricia Falcao, Fergus O’Connor, Ben Fino-Radin, Michael Campos-Quinn, Mike Casey, Charles Hosale, Ben Turkus, Kelly Haydon, Micky Lindner, Alessandra Luciano, Jonáš Svatoš, Andrew Weaver, Libby Hopfauf, Bleakely McDowell, Siobhan C Hagan, Somaya Langley, Alexander Ivash, Moritz Barsnick, Moritz Bunkus, Mary Kidd, Elizabeth England, Zeranoe, Eddy Colloton, Ethan Gates, Savannah Campbell, Vicky Philips, Adam Lott, Yvonne Ng, Erwin Verbruggen, Carl Fleischauer, Lorena Ramirez-Lopez, Dinah Handel, Jim Linder, Tim Walsh, Johan van der Knijff, Donal Foreman, Jenny Hunt, John Warburton, Mark Philips, Steve Lhomme, Brendan Coates, Morgan Oscar Morel, Andreas Romeyke, Marion Jaks, Hermann Lewetz, Joshua Ng, Derek Buitenhuis, Tod Robbins, Katherine Frances Nagels, Jim Sam, Genevieve Havermayer-King, Jenny Mitcham, Brian tvc15, Zach Kelling, Ian Easton, Denis Warburton, Kathryn Gronsbell, Kathryn Cassidy, Stuart Kenny, Richard Lehane, Paul B Mahol, Jonathan Farbowitz, Treasa Harkin, Ed Summers, Justin Simpson, oioiiooixiii, Shira Peltzman, Dolores Grant, Bertram Lyons, The Great Bear, Big Bear, Se Merry Doyle, Eugene Finn, Jaime Mears, Richard Wright, Brecht Declercq, Nicole Martin, Rebecca Fraimow, John Resig, Casey Davis Kaufman, Charles Poynton, Michael Dineen, Mark Piggot, Emily Boylan, David O’Leary, Andrew Reid, John Gunn, Kai Man Wong, Lok Cheung.

Note: The original markdown documentation template was copied from
mediamicroservices [https://github.com/mediamicroservices/mm]

NOTE: Objects.py has been copied from
https://github.com/simsong/dfxml. walk_to_dfxml.py has also been
copied but has been customised in order to add command line arguments
for optionally turning off checksum generation. For more context, see
https://github.com/simsong/dfxml/pull/28

Index

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Installation

 		
 General

 		
 External Dependencies

 		
 Specific Instructions - Windows

 		
 Specific Instructions - Ubuntu

 		
 Contributing

 		
 Issues

 		
 Pull Requests

 		
 Contributions Needed

 		
 Usage

 		
 Arrangement

 		
 sipcreator.py

 		
 batchsipcreator.py

 		
 aipcreator.py

 		
 batchaipcreator.py

 		
 order.py

 		
 makepbcore.py

 		
 mergepbcore.py

 		
 merge_csv.py

 		
 deletefiles.py

 		
 package_update.py

 		
 subfolders.py

 		
 accession_register.py

 		
 Transcodes

 		
 normalise.py

 		
 makeffv1.py

 		
 bitc.py

 		
 prores.py

 		
 makedip.py

 		
 concat.py

 		
 dcpaccess.py

 		
 dcpfixity.py

 		
 dcpsubs2srt.py

 		
 Fixity Scripts

 		
 copyit.py

 		
 manifest.py

 		
 makedfxml.py

 		
 shadfxml.py

 		
 validate.py

 		
 as11fixity.py

 		
 batchdiff_framemd5.py

 		
 Image Sequences

 		
 seq2ffv1.py

 		
 seq2prores.py

 		
 seq.py

 		
 oeremove.py

 		
 seq2dv.py

 		
 batchmetadata.py

 		
 batchrename.py

 		
 Quality Control

 		
 massqc.py

 		
 videoerror.py

 		
 framemd5.py

 		
 ffv1mkvvalidate.py

 		
 lossy_check.py

 		
 structure_check.py

 		
 Specific Workflows

 		
 masscopy.py

 		
 makefolders.py

 		
 loopline_repackage.py

 		
 batchmakeshell.py

 		
 getdip.py

 		
 Special Collections

 		
 Misc

 		
 update.py

 		
 makeuuid.py

 		
 durationcheck.py

 		
 fakexdcam.py

 		
 get_ps_list.py

 		
 check_register.py

 		
 Experimental-Premis

 		
 premis.py

 		
 viruscheck.py

 		
 Credits

_static/minus.png

_static/plus.png

_static/file.png

